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THE DUALITY OF A GENERALIZED BERGMAN SPACE

Marisa Senmoh'

Abstract

A Bergman space HL*(B, dv,) is the space consisting of all holomorphic
functions on the unit ball B which are square- integrable with respect to dv, where
dv, = co(1 — |2|*)®. The space is non-zero when o > —1. However, these spaces
can be extended to the case —2 < a < —1 by defining a generalized Bergman
space

HL*(B, o) = {f € HL*(B, dvao) : z% € HIL*(B, de)}
which HL*B, a) = HL*(B, dv,) when a > —1 and HL*(B, «) is non-zero
when —2 < a < —1.By [Chailuek,K and Hall, B], the authers proved some prop-
erties of a generalized Bergman space and including the duality of a generalized
Bergman space for o, f > —2

In this reserch, we are interested in the duality of a generalized Bergman

space for all o, (.

Keyword: Duality
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CHAPTER 1

Introduction

d
Let B = { 2= (21, 2, ... zq) € C¢: 2| = Z |z;|> <1 3 be the open unit ball in C™.
i=1

We define the measure

dpy = ex(1 — |z]?)* =+ gz

')
T\ — d)
the weighted Bergman space consisting of all holomorphic functions on B¢ that are square-

where ¢ is the normalization factor defined by ¢y = , A > d. Denote by HL?(B%, 1),
integrable with respect to the measure py. These spaces are Hilbert spaces.

The condition A > d is due to the fact that the measure uy is finite if and only if A > d.
When the measure is finite, all bounded holomorphic functions are square-integrable and, more
importantly, the constant ¢, makes the measure is a probability measure. However, when the
measure is infinite, there are no nonzero holomorphic functions that are square-integrable with
respect to .

For A > d and by the Riesz representation, any function f € HL?(B?, 1) can be represented

as
f(z) = 5 Ky (z,w) f(w) dp(w)
where K, (z,w) = ﬁ is called the reproducing kernel for this space.

Consider the formula for the reproducing kernel K(w,z) = = zl@) <. It is positive definite

for all A > 0, not only A > d. This is an evidence to support that the space HL?(B%, uy) can be
extended to A > 0 as “reproducing kernel Hilbert spaces” .
According to Theorem 4 in [Chailuek,K and Hall,B], we can define a holomorphic Sobolev

d
space (or Besov space) as follows. Let n = [2—‘ , for all A > 0, define
HB\) = {f: B - C|N*f € HL2(BY, ir120), 0 < k < n}

where N denote the number operator

d
0

Then <f, g>,\ = <Af, Bg>’HL2(Bd,p,\+2n) where

N N N
( +)\+n)< Jr>\-i-n+1> ( +)\+2n—1)

N N N
B oMY (e NN Y
(+)\)<+>\+1) <+)\+n1>
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defines an inner product on H(B? \) and , with respect to this inner product, H(B%, \) is a
1

ﬁ. Moreover,
—z W

complete space whose reproducing kernel is also given by K)(z,w) =
H(B?, )) is identical to HL?(B?, y) when X\ > d.
By the definition of a generalized Bergman space. In this research, we will show that the

duality of a generalized Bergman space can be proved by direct computation and boundedness

of coefficients.
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CHAPTER 2

Preliminaries

In this chapter, we first collect some basic knowledge and the notations of operators used

in this research.
Definition 1. Let X be a vector space over a field F. A function || || : X+ [0, 00) is said to be
a norm on X if

(i) |lz|| =0 if and only if z =0

(ii) |lex|| = |¢|||z|| for any x € X and ¢ € F

(iii) [l + yll < [[=]l + [lyll for any z,y € X.

A vector space equipped with a norm is called a normed linear space, or simply a normed space.

Property (iii) is referred to as the triangle inequality.

Definition 2. The metric space (X, d) is said to be complete if every Cauchy sequence in X
converges (that is has a limit which is an element of X). That is if d(z,, zmy) — 0 as m,n — oo

then {z,} must converge also in X.

Definition 3. A Banach Space is a normed linear space which is complete in the metric

defined by its norm. That is d(z,y) = ||z — y||.

Definition 4. An inner product on a vector space V is a function that associates a complex
number (u,v) with each pair of vector u and v in V' in such a way that the following axioms are

satisfied for all vectors u, v and w in V' and all scalars k.
(i) (u,v) = {v,u)
(i) (u+v,w) = (u,w)+ (v,w)
(iii) (ku,v) = k(u,v)
(iv) {(v,v) >0 and (v,v) =0 if and only if v = 0.

A vector space equipped with an inner product is called an inner product space.

So if we define ||v|| = y/(v,v) then || - || is a norm on V.



X

Definition 5. For 1 > p < oo,the £ (X, u)-space is the collection of all functions f : X — C

such that

[ IsePdnt) < o
X

We define LP(X, 1) to be the space of all equivalence classes of functions in L”(X, ) under the

relation fg if and only if f = ¢g almost everywhere with respect to the measure p

Definition 6. A Hilbert space is an inner product space which is complete with respect to

the norm given by the inner product.

Theorem 1. (Riesz Representation) If L is a bounded linear functional on a Hilbert space

H, then there exists a unique y € H such that
L(z) = (z,y) for each x € H
Moreover ||L|| = |ly||-

1 1
Theorem 2. (Holder inequality) If p > 1 and — + — = 1, then
p q

S aibi| < (O Jail?)r (Y [bi]9) 7
=1 1=1 =1

Definition 7. Let X be a norm linear space. Denote by X* the set of all bounded linear

functional on X. We call X* the dual space of X

Theorem 3. (Duality of Bergman spaces) A Bergman space can be represented by the dual

of another Bergman space by the following theorem. (See Zhu,K Theorem 2.12) For «, 8 > d,
HL*(BY, po)* = HL*(BY, 1)

under the inner product
@i, = [ FETE ().

for f € HIA(B, o), g € HI(B%, ) and 7 = 2.

Duality of generalized Bergman spaces. It should be noted that a Bergman space HL?(B?, 1))
is a closed subspace of the space L?(B, 1y ). However, by its definition, H (B, \) is not defined
as a subspace of any L? space. Therefore the proof of the duality of Bergman spaces cannot
be adopted to H(B?, \). However, the duality of generalized Bergman space can be proved by

direct computation and boundedness of coefficients.



CHAPTER 3

Main Results

Theorem 4. For o, >0
H(B o) = HBY, B)

under the inner product

(Foghy = [ ATGBIE dison2),

for f € H(B%,0), g € H(E5) and = 47

Proof. For each g € H(B?, ), we define T,,;: H(B%,a) — C by

Tg(f) = <f»9>'y~

Next, we will prove that 7, € H(B?, «)*. Consider

TNl = [{f:9)5]

= |<Af’Bg>7{L2(]Bd,u~,+2n)|

= Cyi2n

IN

rian [ (1= DA o)

By Holder’s inequality,

ITy(f)l < cyyon (/Bd((l - |Z‘2)a+22n |Af(Z)D2 (1- |z|2)(d+1)dz)

' (/Bd((l =)= Bg)D? (1

= Cy+2n (/Bd JAf(2)P(1 = [2[*)* 2" (1 - z|2)(d+1)dz)

([ BT - e -

= cyranllAf (D) lnr2 @ paen) |1 BI(2

/Bd Af(2)Bg(z)(1 — |2|2)7F2 (1 — |2)2) (@D gz

- z|2>-<d+“dz)

B+2n ———— _
= [By(2)] (1 - |2*) " dz.

=

N

|

2

SIS

)@z )

)||HL2(IBd,Nﬁ+2n)

= C’y+2n<Af(Z)7Af(z)>a+2n<Bg(Z)a Bg(z)>5+2n'
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By considering the coeflicients in the operators A and B, there exist constants C4(n,«) and
Cp(n, B) such that (Af(2), Af(=))asan < Caln,@){F(2), F(z))arzn and (Bg(z), Bg())psan <

Cp(n,a)(g(2),9(2)) g+2n-
Therefore, |T4(f)| < C|\gllg+2nll fllat+2n Where the constant C' is independent of f.

Conversely, let F' € H(B?, a)*. By Riesz representation, there exists a function h € H(B?, «)
such that F(f) = (f,h) for all f € H(B? a). To prove H(B? a)* = H(B? 3), we need
a function g € H(B?,p), instead of h € H(B? «), such that F(f) = (f,g),. However, by
manipulating the coefficients, we obtain that function g.

Consider, for f € H(B?, a),

F(f) = <fa h>a = <Af> Bh>7—LL2(Bd,MQ+2n)-
Now the operator A and B can be distributed as

A= ZRka+I and B = Zska +1.
k=1 k=1

Therefore,

F(f) = <Afv Bh>HL2(Bd1/L(y+2‘n)

= <Z RyN*f+ f, Z S NFh + h>
HL2(Bd /"a+2w)

k=1 =

- <2n:RkN f,gskzv’f >

k=1

+ <f,ZSka

k=1 >HL2(]Rd7.ua+2n)

= < Rkaf,ZSkaMh> + <Z ReNF ¥, Mh>
k= HL2(BL, iy 4 2n) L2(BY, pty42n)

<Z RiN*f, h>
HL?(BY patzn) k=1 HL?(BY ot 2n)

+ <f7 h’>HL2(]Ed7Ma+2n)

1 k=1 k=1

+{f ZSkaMh> + (s Mh) 2 a0

HL2 (B, piy 4 2n)

n n
— <Z Nk’f+f,ZSkaMh+Mh>
k k=1 HL2(B‘1,;1,7+2”)

= (Af,MBh)y 25

yt2n)

O

where M is a positive constant depend on a,~y. Let g = Mh then we also have g € H(B?, a) C
H(BY, B) if 8 > a. Therefore there exists g € H(B?, 3) such that F(f) = (Af, Bg)rr2®epsnn) =
(f,g)~, for all f € HB, ).
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The condition 8 > « restricts us to say that this theorem is valid only for § > « > 0. However for
a > f3 from above we get H(B?, 3)* C H(B? «) and since H is reflexive Banach spaces therefore
H(B? a)* C HB, B)** = H(B?, B) which make the theorem to be valid for all «, 3 > 0.
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CHAPTER 1

Introduction

d
Z |zi|> < 1 } be the open unit
i=1

Let B* = { 2 = (21, 22, ... 2q) € C%: ||2]| =

ball in C*. We define the measure

dpy = cx(1 — |z 0+ gz

I'(A)
T\ —d)’
HL?(BY, 11y), the weighted Bergman space consisting of all holomorphic functions

where ¢ is the normalization factor defined by ¢, = A > d. Denote by
on B that are square-integrable with respect to the measure p,. These spaces are
Hilbert spaces.

The condition A > d is due to the fact that the measure pu, is finite if and
only if A > d. When the measure is finite, all bounded holomorphic functions are
square-integrable and, more importantly, the constant ¢, makes the measure is a
probability measure. However, when the measure is infinite, there are no nonzero
holomorphic functions that are square-integrable with respect to .

For A > d and by the Riesz representation, any function f € HL?*(B?, uy) can

be represented as

f(z) = , K (z,w) f(w) dpx(w)
B
where K)(z,w) = m is called the reproducing kernel for this space.
Consider the formula for the reproducing kernel K (w,z) = m It is pos-

itive definite for all A > 0, not only A > d. This is an evidence to support that
the space HL?*(B?, 1)) can be extended to A > 0 as “reproducing kernel Hilbert
spaces” .

According to Theorem 4 in [Chailuek,K and Hall,B], we can define a holomor-

phic Sobolev space (or Besov space) as follows. Let n = Ef‘ , for all A > 0,



define
HBY N ={f: B’ = C|N*f € HL*(BY, irs0s), 0 < k < n}

where N denote the number operator

0

=1

Then (f, g)» = (Af, Bg>HL2(Bd7M+2n) where

N N N
A= (1 J A S U (T S
( +)\+n>( +)\+n+1) < +)\—1—271—1)
N N N
B — (7429 (72N (pe 22
(+A)(+A+1) (+>\+n—1>

defines an inner product on H (B¢ )\) and , with respect to this inner product,

H (B9, )\) is a complete space whose reproducing kernel is also given by K (z,w) =
1
Az Moreover, H(B?, \) is identical to HL*(B?, uy) when A > d.
—z-W
By the definition of a generalized Bergman space. In this research, we will

show that the duality of a generalized Bergman space can be proved by direct

computation and boundedness of coefficients.



CHAPTER 2

Preliminaries

In this chapter, we first collect some basic knowledge and the notations of

operators used in this research.

Definition 1. Let X be a vector space over a field F. A function || || : X+ [0, 00)

is said to be a norm on X if
(i) ||z|| =0 if and only if x =0
(i) [lcx| = |c|||z] for any € X and c € F
(iii) [l +yll < llzll + [y for any z,y € X.

A vector space equipped with a norm is called a normed linear space, or

simply a normed space. Property (iii) is referred to as the triangle inequality.

Definition 2. The metric space (X, d) is said to be complete if every Cauchy
sequence in X converges (that is has a limit which is an element of X). That is if

d(xp, xm) — 0 as m,n — oo then {z,,} must converge also in X.

Definition 3. A Banach Space is a normed linear space which is complete in

the metric defined by its norm. That is d(x,y) = ||z — y||.

Definition 4. An inner product on a vector space V' is a function that associates
a complex number (u,v) with each pair of vector u and v in V' in such a way that

the following axioms are satisfied for all vectors u, v and w in V' and all scalars k.
(i) (u,0) = (v,u)
(il)) (u+v,w) = (u,w) + (v, w)
(iii) (ku,v) = k{u,v)

(iv) (v,v) >0 and (v,v) =0 if and only if v = 0.



A vector space equipped with an inner product is called an inner product space.

So if we define ||v]| = /(v,v) then || - || is a norm on V.

Definition 5. For 1 > p < oco,the L7 (X, u)-space is the collection of all functions
f X — C such that

/X 1 () Pdu(z) < oo.

We define LP(X, ) to be the space of all equivalence classes of functions in
LP(X, p) under the relation fg if and only if f = g almost everywhere with respect

to the measure p

Definition 6. A Hilbert space is an inner product space which is complete with

respect to the norm given by the inner product.

Theorem 1. (Riesz Representation) If L is a bounded linear functional on a

Hilbert space H, then there exists a unique y € H such that
L(z) = (z,y) for each x € H

Moreover || L|| = ||y]|-

1 1
Theorem 2. (Holder inequality) Ifp > 1 and — + — =1, then
p q

n

Z aibi

=1

n n

< 3 Jai)r (O Il

1=1 i=1

Definition 7. Let X be a norm linear space. Denote by X* the set of all bounded

linear functional on X. We call X* the dual space of X

Theorem 3. (Duality of Bergman spaces) A Bergman space can be repre-
sented by the dual of another Bergman space by the following theorem. (See Zhu,K
Theorem 2.12) For «, 8 > d,

HL? (B, )" = HL*(BY, 15)



under the inner product

(f, g>HL2(IBd,M) = /]Bd f(Z)@de(Z),

for f € HL*(BY, p,), g € HL*(BY, ug) and v = a ;— ﬁ.

Duality of generalized Bergman spaces. It should be noted that a Bergman
space HL?*(B? uy) is a closed subspace of the space L*(BY, uy). However, by its
definition, H (B9, \) is not defined as a subspace of any L? space. Therefore the
proof of the duality of Bergman spaces cannot be adopted to H (B, \). However,
the duality of generalized Bergman space can be proved by direct computation

and boundedness of coefficients.
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Main Results

Theorem 4. For o, > 0
H(B% a)* = H(B% B)
under the inner product

by = [ AFCIBIE di o),

a+p
5

for f € H(BY ), g € H(B? B) and v =

Proof. For each g € H(B?, 3), we define T,: H(B% «) — C by

Ty(f) = (1 9)~-

Next, we will prove that T, € H(B? «)*. Consider

Tl = [{f9),]

= |<Af7 Bg)HLQ(IBd,uW+2n)|

= Cy42n

/}Bd Af(Z)Bg(z)(l — |Z|2)’Y+2n (1 . |Z|2)_(d+1)dz

Bt2n

= [By(2)] (1 = [2") "Dz

< e [ (=R A0~ 2P



By Holder’s inequality,

1

Ty (D < crimm ( / (1= ) Af ) (1 - \z12>-<d+1>dz)2

1

| ( /B (- P BN - |Z|2)_(d+l)dz)2

VI

= Cyt2n </Bd JAf(2)P(1 = |22 (1 — ’z‘2>(d+1)dz)

‘ (/IEBd mz(l — |27 - ‘Z|2)_(d+1)dz)

=

= CypamllAS ()12 puason) 1BI(2) 312284, 105 20

= CW+2n<f4f(z)v/4f(z)>a+2n<lgg(z)algg(z)>5+2n-

By considering the coefficients in the operators A and B, there exist constants
Cu(n,a) and Cg(n, ) such that (Af(z), Af(2))ar2n < Ca(n,a){(f(2), f(2))aron
and (Bg(2), Bg(2))p+2n < Cp(n, a){g(z), 9(2)) sr2n-
Therefore, |T,(f)| < C||gllg+2n f|lat2n Where the constant C' is independent of f.
Conversely, let F' € H(B?, a)*. By Riesz representation, there exists a function
h € H(B% «) such that F(f) = (f, h), for all f € H(B% «). To prove H(B%, a)* =
H(B?, 3), we need a function g € H(B?, f3), instead of h € H(B? «a), such that
F(f)=(f,g),. However, by manipulating the coefficients, we obtain that function
g.
Consider, for f € H(B?, a),

F(f) = <f7 h)Oé = <Af’ Bh>HL2(Bd,/La+2n)‘
Now the operator A and B can be distributed as

A:iRkN’w[andB:iskN’wI.

k=1 k=1



Therefore,

F(f) = <Af7 Bh)HLQ(Bd,ua+2n)

=1 k=1 HL2(B%, pat2n)
(Brangsom) o e(Snoss)
k=1 k=1 HL2(BY, pat2n) k=1

—|— <f7 Z Skah> + <f7 h>'HL2(Bd,,LLa+2n)
k=1

HLQ (]BdaHOH»Qn)

<Z RiN* f,ZSkaMh> + <Z RiN*f, Mh>
k=1 k=1 HL2(B, 1y 12n) HL2 (B, py42n)

k=1

HL2 (Bd»llaJr?n)

k
+ <f, > SN Mh> + (fs M)y rama, o0
HL2(Bd7M’Y+2n)

k=1

— <Z ReN*f + f, Z SENFMh + Mh>
k=1 k=1

= (Af, MBh>HL2(B

HL? (Bd#w+2n)

d:.u"‘/+2n) :

]

where M is a positive constant depend on «,vy. Let ¢ = Mh then we also have
g € HB o) C H(BY, B) if B> «. Therefore there exists g € H(B?, 3) such that
F(f) = (Af, Bg) aro®ipu, 0n) = ([, 9)4, for all f € H(B?, ).

The condition § > «a restricts us to say that this theorem is valid only for § >
a > 0. However for a > 3 from above we get H(B? 5)* C H(B? «) and since
H is reflexive Banach spaces therefore H (B4, o)* C H(B?, 3)** = H(B?, 3) which

make the theorem to be valid for all «, 8 > 0.
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