

รายงานการวิจัย

ภาวะคู่กันของปริภูมิเบิร์กแมนนัยทั่วไป

The Duality of a Generalized Bergman Space

มาริสา เส็นเหมาะ

Marisa Senmoh

คณะศิลปศาสตร์

มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย

ใด้รับการสนับสนุนทุนวิจัยจากมหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย งบประมาณเงินรายได้ ประจำปี พ.ศ. 2558

ภาวะคู่กันของปริภูมิเบิร์กแมนนัยทั่วไป

มาริสา เส็นเหมาะ¹

บทคัดย่อ

ปริภูมิเบิร์กแมนคือปริภูมิของฟังก์ชันโฮโลมอร์ฟิกซึ่งกำลังสองสามารถหาปริพันธ์ได้เมื่อ เทียบกับเมเชอร์ dv_{lpha} โดยที่ $dv_{lpha} = c_{lpha} (1 - \left|z\right|^2)^{lpha}$ นั่นคือ

$$\mathbf{H}L^{2}(\mathbf{B}, dv_{\alpha}) = \{ f \mid f \in L^{2}(\mathbf{B}, dv_{\alpha}) \cap \mathbf{H}(\mathbf{B}) \}$$

ปริภูมิเบิร์กแมนจะไม่เป็นปริภูมิศูนย์ก็ต่อเมื่อ $\alpha > -1$ อย่างไรก็ตามจากการพิจารณาค่าของรีโปร ดักซึ่งเคอเนล $K(w,z) = \frac{1}{\pi(1 - \langle z, w \rangle)^{\alpha+2}}$ ทำให้ทราบว่า K(w,z) ยังคงนิยามอย่างบวกได้จนถึง กรณี $-2 < \alpha \le -1$ และได้นิยามปริภูมิเบิร์กแมนเชิงทั่วไปไว้ดังนี้

$$HL^{2}(\mathbf{B},\alpha) = \left\{ f \in HL^{2}(\mathbf{B}, dv_{\alpha+2}) : z \frac{df}{dz} \in HL^{2}(\mathbf{B}, dv_{\alpha+2}) \right\}$$

จาก [Chailuek,K and Hall,B] ผู้เขียนได้ศึกษาเกี่ยวกับสมบัติบางประการของปริภูมิเบิร์กแมนเชิง นัยทั่วไปซึ่งรวมถึงการศึกษาภาวะคู่กันของปริภูมิเบิร์กแมนเชิงนัยทั่วไป ในกรณีที่ α,β>-2 ไว้ แล้ว

ในการศึกษาครั้งนี้ เราได้ศึกษาเพิ่มเติมถึงภาวะคู่กันของปริภูมิเบิร์กแมนนัยทั่วไป นั่นคือ จะแสดงให้เห็นว่าปริภูมิเบิร์กแมน ในกรณีที่ α,β มีก่าใดๆแล้ว ก็ยังคงมีสมบัติการเป็นภาวะคู่กัน

คำสำคัญ: ภาวะคู่กัน

้คณะศิลปศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย อ. เมือง จ. สงขลา

i

ACKNOWLEDMENTS

This research was supported by Faculty of Liberal Arts Research Fund, Rajamangala University of Technology Srivijaya, Songkhla, Thailand. The author would like to thanks for this support.

I wish to thanks all of my friends for their helpful suggestions and friendship. Finally, I wish to thanks my beloved parents, sisters and brothers for their love, support, understanding and encouragement.

Marisa Senmoh

iii

THE DUALITY OF A GENERALIZED BERGMAN SPACE

Marisa Senmoh¹

Abstract

A Bergman space $\mathcal{H}L^2(\mathbb{B}, dv_\alpha)$ is the space consisting of all holomorphic functions on the unit ball \mathbb{B} which are square- integrable with respect to dv_α where $dv_\alpha = c_\alpha (1 - |z|^2)^\alpha$. The space is non-zero when $\alpha > -1$. However, these spaces can be extended to the case $-2 < \alpha \leq -1$ by defining a generalized Bergman space

$$HL^{2}(\mathbb{B}, \ \alpha) = \left\{ f \in \mathcal{H}L^{2}(\mathbb{B}, \ dv_{\alpha+2}) : z\frac{df}{dz} \in \mathcal{H}L^{2}(\mathbb{B}, \ dv_{\alpha+2}) \right\}$$

which $HL^2(\mathbb{B}, \alpha) = \mathcal{H}L^2(\mathbb{B}, dv_\alpha)$ when $\alpha > -1$ and $HL^2(\mathbb{B}, \alpha)$ is non-zero when $-2 < \alpha \leq -1$.By [Chailuek,K and Hall, B], the authers proved some properties of a generalized Bergman space and including the duality of a generalized Bergman space for $\alpha, \beta > -2$

In this reserve, we are interested in the duality of a generalized Bergman space for all α, β .

Keyword: Duality

.....

CONTENT

ACKNOWLEDGMENT	ii
ABSTRACT IN THAI	iii
ABSTRACT IN ENGLISH	iv
CONTENTS	v
1 Introduction	1
2 Preliminaries	3
3 Main Results	6
BIBLIOGRAPHY	9

v

Introduction

Let $\mathbb{B}^d = \left\{ z = (z_1, z_2, \dots, z_d) \in \mathbb{C}^d : ||z|| = \sqrt[d]{\sum_{i=1}^d |z_i|^2} < 1 \right\}$ be the open unit ball in \mathbb{C}^n .

We define the measure

$$d\mu_{\lambda} = c_{\lambda} (1 - |z|^2)^{\lambda - (d+1)} dz$$

where c_{λ} is the normalization factor defined by $c_{\lambda} = \frac{\Gamma(\lambda)}{\pi^d \Gamma(\lambda - d)}, \ \lambda > d$. Denote by $\mathcal{H}L^2(\mathbb{B}^d, \mu_{\lambda}),$ the weighted Bergman space consisting of all holomorphic functions on \mathbb{B}^d that are squareintegrable with respect to the measure μ_{λ} . These spaces are Hilbert spaces.

The condition $\lambda > d$ is due to the fact that the measure μ_{λ} is finite if and only if $\lambda > d$. When the measure is finite, all bounded holomorphic functions are square-integrable and, more importantly, the constant c_{λ} makes the measure is a probability measure. However, when the measure is infinite, there are no nonzero holomorphic functions that are square-integrable with respect to μ_{λ} .

For $\lambda > d$ and by the Riesz representation, any function $f \in \mathcal{H}L^2(\mathbb{B}^d, \mu_\lambda)$ can be represented as

$$f(z) = \int_{\mathbb{B}^d} K_{\lambda}(z, w) f(w) \, d\mu_{\lambda}(w)$$

where $K_{\lambda}(z, w) = \frac{1}{(1-z \cdot \overline{w})^{\lambda}}$ is called the reproducing kernel for this space.

Consider the formula for the reproducing kernel $K(w,z) = \frac{1}{(1-z \cdot \overline{w})^{\lambda}}$. It is positive definite for all $\lambda > 0$, not only $\lambda > d$. This is an evidence to support that the space $\mathcal{H}L^2(\mathbb{B}^d, \mu_\lambda)$ can be extended to $\lambda > 0$ as "reproducing kernel Hilbert spaces".

According to Theorem 4 in [Chailuek,K and Hall,B], we can define a holomorphic Sobolev space (or Besov space) as follows. Let $n = \left\lceil \frac{d}{2} \right\rceil$, for all $\lambda > 0$, define

$$H(\mathbb{B}^d,\lambda) = \{f \colon \mathbb{B}^d \to \mathbb{C} \, | \, N^k f \in \mathcal{H}L^2(\mathbb{B}^d,\mu_{\lambda+2n}), \, 0 \leq k \leq n \}$$

where N denote the number operator

$$N = \sum_{i=1}^{d} z_i \frac{\partial}{\partial z_i}$$

Then $\langle f, g \rangle_{\lambda} = \langle Af, Bg \rangle_{\mathcal{H}L^2(\mathbb{B}^d, \mu_{\lambda+2n})}$ where

$$A = \left(I + \frac{N}{\lambda + n}\right) \left(I + \frac{N}{\lambda + n + 1}\right) \cdots \left(I + \frac{N}{\lambda + 2n - 1}\right)$$
$$B = \left(I + \frac{N}{\lambda}\right) \left(I + \frac{N}{\lambda + 1}\right) \cdots \left(I + \frac{N}{\lambda + n - 1}\right)$$

defines an inner product on $H(\mathbb{B}^d, \lambda)$ and , with respect to this inner product, $H(\mathbb{B}^d, \lambda)$ is a complete space whose reproducing kernel is also given by $K_{\lambda}(z, w) = \frac{1}{(1 - z \cdot \overline{w})^{\lambda}}$. Moreover, $H(\mathbb{B}^d, \lambda)$ is identical to $\mathcal{H}L^2(\mathbb{B}^d, \mu_{\lambda})$ when $\lambda > d$.

By the definition of a generalized Bergman space. In this research, we will show that the duality of a generalized Bergman space can be proved by direct computation and boundedness of coefficients.

Preliminaries

In this chapter, we first collect some basic knowledge and the notations of operators used in this research.

Definition 1. Let X be a vector space over a field \mathbb{F} . A function $\|\cdot\| : X \mapsto [0, \infty)$ is said to be a **norm** on X if

- (i) ||x|| = 0 if and only if x = 0
- (ii) ||cx|| = |c|||x|| for any $x \in X$ and $c \in \mathbb{F}$
- (iii) $||x + y|| \le ||x|| + ||y||$ for any $x, y \in X$.

A vector space equipped with a norm is called a **normed linear space**, or simply a **normed space**. Property (iii) is referred to as the *triangle inequality*.

Definition 2. The metric space (X, d) is said to be **complete** if every Cauchy sequence in X converges (that is has a limit which is an element of X). That is if $d(x_n, x_m) \to 0$ as $m, n \to \infty$ then $\{x_n\}$ must converge also in X.

Definition 3. A **Banach Space** is a normed linear space which is complete in the metric defined by its norm. That is d(x, y) = ||x - y||.

Definition 4. An inner product on a vector space V is a function that associates a complex number $\langle u, v \rangle$ with each pair of vector u and v in V in such a way that the following axioms are satisfied for all vectors u, v and w in V and all scalars k.

- (i) $\langle u, v \rangle = \langle v, u \rangle$
- (ii) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- (iii) $\langle ku, v \rangle = k \langle u, v \rangle$
- (iv) $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0$ if and only if v = 0.

A vector space equipped with an inner product is called an **inner product space**. So if we define $||v|| = \sqrt{\langle v, v \rangle}$ then $|| \cdot ||$ is a norm on V. **Definition 5.** For $1 \ge p < \infty$, the $\mathcal{L}^{\mathcal{P}}(X, \mu)$ -space is the collection of all functions $f: X \to \mathbb{C}$ such that

$$\int_X \|f(z)\|^p d\mu(z) < \infty.$$

We define $L^p(X,\mu)$ to be the space of all equivalence classes of functions in $L^p(X,\mu)$ under the relation fg if and only if f = g almost everywhere with respect to the measure μ

Definition 6. A **Hilbert space** is an inner product space which is complete with respect to the norm given by the inner product.

Theorem 1. (Riesz Representation) If L is a bounded linear functional on a Hilbert space H, then there exists a unique $y \in H$ such that

$$L(x) = \langle x, y \rangle$$
 for each $x \in H$

Moreover ||L|| = ||y||.

Theorem 2. (Hölder inequality) If p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \left(\sum_{i=1}^{n} |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |b_{i}|^{q}\right)^{\frac{1}{q}}$$

Definition 7. Let X be a norm linear space. Denote by X^* the set of all bounded linear functional on X. We call X^* the **dual space** of X

Theorem 3. (Duality of Bergman spaces) A Bergman space can be represented by the dual of another Bergman space by the following theorem. (See Zhu,K Theorem 2.12) For $\alpha, \beta > d$,

$$\mathcal{H}L^2(\mathbb{B}^d,\mu_\alpha)^* = \mathcal{H}L^2(\mathbb{B}^d,\mu_\beta)$$

under the inner product

for $f \in \mathcal{H}L^2(\mathbb{B}^d, \mu_\alpha), g \in$

$$\langle f,g \rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\gamma})} = \int_{\mathbb{B}^{d}} f(z)\overline{g(z)} \, d\mu_{\gamma}(z),$$
$$\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\beta}) \text{ and } \gamma = \frac{\alpha+\beta}{2}.$$

Duality of generalized Bergman spaces. It should be noted that a Bergman space $\mathcal{H}L^2(\mathbb{B}^d, \mu_\lambda)$ is a closed subspace of the space $L^2(\mathbb{B}^d, \mu_\lambda)$. However, by its definition, $H(\mathbb{B}^d, \lambda)$ is not defined as a subspace of any L^2 space. Therefore the proof of the duality of Bergman spaces cannot be adopted to $H(\mathbb{B}^d, \lambda)$. However, the duality of generalized Bergman space can be proved by direct computation and boundedness of coefficients.

Main Results

Theorem 4. For $\alpha, \beta > 0$

$$H(\mathbb{B}^d, \alpha)^* = H(\mathbb{B}^d, \beta)$$

under the inner product

$$\langle f,g\rangle_{\gamma} = \int_{\mathbb{B}^d} Af(z)\overline{Bg(z)} \, d\mu_{\gamma+2n}(z),$$

for $f \in H(\mathbb{B}^d, \alpha)$, $g \in H(\mathbb{B}^d, \beta)$ and $\gamma = \frac{\alpha + \beta}{2}$.

Proof. For each $g \in H(\mathbb{B}^d, \beta)$, we define $T_g \colon H(\mathbb{B}^d, \alpha) \to \mathbb{C}$ by

$$T_g(f) = \langle f, g \rangle_{\gamma}.$$

Next, we will prove that $T_g \in H(\mathbb{B}^d, \alpha)^*$. Consider

$$\begin{aligned} |T_g(f)| &= |\langle f,g \rangle_{\gamma}| \\ &= |\langle Af,Bg \rangle_{\mathcal{H}L^2(\mathbb{B}^d,\mu_{\gamma+2n})}| \\ &= c_{\gamma+2n} \left| \int_{\mathbb{B}^d} Af(z)\overline{Bg(z)}(1-|z|^2)^{\gamma+2n} (1-|z|^2)^{-(d+1)} dz \right| \\ &\leq c_{\gamma+2n} \int_{\mathbb{B}^d} (1-|z|^2)^{\frac{\alpha+2n}{2}} |Af(z)|(1-|z|^2)^{\frac{\beta+2n}{2}} \overline{|Bg(z)|} (1-|z|^2)^{-(d+1)} dz \end{aligned}$$

By Hölder's inequality,

$$\begin{aligned} |T_g(f)| &\leq c_{\gamma+2n} \left(\int_{\mathbb{R}^d} ((1-|z|^2)^{\frac{\alpha+2n}{2}} |Af(z)|)^2 (1-|z|^2)^{-(d+1)} dz \right)^{\frac{1}{2}} \\ &\quad \cdot \left(\int_{\mathbb{R}^d} ((1-|z|^2)^{\frac{\beta+2n}{2}} \overline{|Bg(z)|})^2 (1-|z|^2)^{-(d+1)} dz \right)^{\frac{1}{2}} \\ &= c_{\gamma+2n} \left(\int_{\mathbb{R}^d} |Af(z)|^2 (1-|z|^2)^{\alpha+2n} (1-|z|^2)^{-(d+1)} dz \right)^{\frac{1}{2}} \\ &\quad \cdot \left(\int_{\mathbb{R}^d} \overline{|Bg(z)|}^2 (1-|z|^2)^{\beta+2n} (1-|z|^2)^{-(d+1)} dz \right)^{\frac{1}{2}} \end{aligned}$$

 $= c_{\gamma+2n} \|Af(z)\|_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} \|Bg(z)\|_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\beta+2n})}$

 $= c_{\gamma+2n} \langle Af(z), Af(z) \rangle_{\alpha+2n} \langle Bg(z), Bg(z) \rangle_{\beta+2n}.$

By considering the coefficients in the operators A and B, there exist constants $C_A(n, \alpha)$ and $C_B(n, \beta)$ such that $\langle Af(z), Af(z) \rangle_{\alpha+2n} \leq C_A(n, \alpha) \langle f(z), f(z) \rangle_{\alpha+2n}$ and $\langle Bg(z), Bg(z) \rangle_{\beta+2n} \leq C_B(n, \alpha) \langle g(z), g(z) \rangle_{\beta+2n}$.

Therefore, $|T_g(f)| \leq C ||g||_{\beta+2n} ||f||_{\alpha+2n}$ where the constant C is independent of f.

Conversely, let $F \in H(\mathbb{B}^d, \alpha)^*$. By Riesz representation, there exists a function $h \in H(\mathbb{B}^d, \alpha)$ such that $F(f) = \langle f, h \rangle_{\alpha}$ for all $f \in H(\mathbb{B}^d, \alpha)$. To prove $H(\mathbb{B}^d, \alpha)^* = H(\mathbb{B}^d, \beta)$, we need a function $g \in H(\mathbb{B}^d, \beta)$, instead of $h \in H(\mathbb{B}^d, \alpha)$, such that $F(f) = \langle f, g \rangle_{\gamma}$. However, by manipulating the coefficients, we obtain that function g.

Consider, for $f \in H(\mathbb{B}^d, \alpha)$,

$$F(f) = \langle f, h \rangle_{\alpha} = \langle Af, Bh \rangle_{\mathcal{H}L^2(\mathbb{B}^d, \mu_{\alpha+2n})}.$$

Now the operator A and B can be distributed as

$$A = \sum_{k=1}^{n} R_k N^k + I$$
 and $B = \sum_{k=1}^{n} S_k N^k + I.$

Therefore,

$$\begin{split} F(f) &= \langle Af, Bh \rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\alpha+2n})} \\ &= \left\langle \sum_{k=1}^{n} R_{k} N^{k} f + f, \sum_{k=1}^{n} S_{k} N^{k} h + h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\alpha+2n})} \\ &= \left\langle \sum_{k=1}^{n} R_{k} N^{k} f, \sum_{k=1}^{n} S_{k} N^{k} h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\alpha+2n})} + \left\langle \sum_{k=1}^{n} R_{k} N^{k} f, h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\alpha+2n})} \\ &+ \left\langle f, \sum_{k=1}^{n} S_{k} N^{k} h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\alpha+2n})} + \left\langle f, h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\alpha+2n})} \\ &= \left\langle \sum_{k=1}^{n} \mathcal{R}_{k} N^{k} f, \sum_{k=1}^{n} \mathcal{S}_{k} N^{k} M h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\gamma+2n})} + \left\langle f, Mh \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\gamma+2n})} \\ &+ \left\langle f, \sum_{k=1}^{n} \mathcal{R}_{k} N^{k} f + f, \sum_{k=1}^{n} \mathcal{S}_{k} N^{k} M h + Mh \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\gamma+2n})} \\ &= \left\langle \mathcal{A}f, M \mathcal{B}h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d}, \mu_{\gamma+2n})}. \end{split}$$

where M is a positive constant depend on α, γ . Let g = Mh then we also have $g \in H(\mathbb{B}^d, \alpha) \subset H(\mathbb{B}^d, \beta)$ if $\beta > \alpha$. Therefore there exists $g \in H(\mathbb{B}^d, \beta)$ such that $F(f) = \langle \mathcal{A}f, \mathcal{B}g \rangle_{HL^2(\mathbb{B}^d, \mu_{\gamma+2n})} = \langle f, g \rangle_{\gamma}$, for all $f \in H(\mathbb{B}^d, \alpha)$.

The condition $\beta > \alpha$ restricts us to say that this theorem is valid only for $\beta > \alpha > 0$. However for $\alpha > \beta$ from above we get $H(\mathbb{B}^d, \beta)^* \subseteq H(\mathbb{B}^d, \alpha)$ and since H is reflexive Banach spaces therefore $H(\mathbb{B}^d, \alpha)^* \subseteq H(\mathbb{B}^d, \beta)^{**} = H(\mathbb{B}^d, \beta)$ which make the theorem to be valid for all $\alpha, \beta > 0$.

Bibliography

- Chailuek, K and Hall, B.1974. Quantization, Math. USSR Izvestija. Vol.8, No.5.
- Berezin, F. A. 1974. Quantization, Math. USSR Izvestija. Vol.8, No.5, .
- Berezin, F. A. 1976. Quantization in complex symmetric spaces, Math. USSR Izvestija. Vol.9, No.2. 341-379(1976).
- Borthwick, D and Lesniewski, A. 1993. Non-perturbative deformation quantization of Cartan domains, J. Funct. Anal., Vol.113, 153-176.
- Duren, P and Schuster, A. 2004. Bergman spaces, Mathematical surveys and monographs; no.100, American Mathematical Society.
- Englis, M. 1996. Berezin transform and the Laplace-Beltrami operator, St. Petersburg Math. J., Vol.7, No.4, 633-647.
- Folland, G. 1989. Harmonic analysis in phase space, Princeton University Press.
- Hall, B. 2000. Holomorphic methods in analysis and mathematical physics. In, "First Summer School in Analysis and Mathematical Physics", Contemp.

Math. Amer. Math. Soc., Vol.260, 1-59.

- Hedenmalm, H. Korenblum, B and Zhu, K. 2000. *Theory of Bergman spaces*, Springer-Verlag.
- Klimek, S and Lesniewski, A. 1976. Quantum Riemann surfaces I. The unit disc, Commun. Math. Phys, Vol.146, 103-122.
- Unterberger, A and Upmeier, H. 1994. The Berezin transform and invariant differential operators, Commun. Math. Phys, Vol.164, 563-597.
- Zhu, K. 2004. Spaces of holomorphic functions in the unit ball, Springer-Verlag.

Introduction

Let
$$\mathbb{B}^d = \left\{ z = (z_1, z_2, \dots, z_d) \in \mathbb{C}^d \colon ||z|| = \sqrt[d]{\sum_{i=1}^d |z_i|^2} < 1 \right\}$$
 be the open unit all in \mathbb{C}^n . We define the measure

ball in \mathbb{C}^n . We define the measure

$$d\mu_{\lambda} = c_{\lambda} (1 - |z|^2)^{\lambda - (d+1)} dz$$

where c_{λ} is the normalization factor defined by $c_{\lambda} = \frac{\Gamma(\lambda)}{\pi^d \Gamma(\lambda - d)}, \ \lambda > d$. Denote by $\mathcal{H}L^2(\mathbb{B}^d,\mu_\lambda)$, the weighted Bergman space consisting of all holomorphic functions on \mathbb{B}^d that are square-integrable with respect to the measure μ_{λ} . These spaces are Hilbert spaces.

The condition $\lambda > d$ is due to the fact that the measure μ_{λ} is finite if and only if $\lambda > d$. When the measure is finite, all bounded holomorphic functions are square-integrable and, more importantly, the constant c_{λ} makes the measure is a probability measure. However, when the measure is infinite, there are no nonzero holomorphic functions that are square-integrable with respect to μ_{λ} .

For $\lambda > d$ and by the Riesz representation, any function $f \in \mathcal{H}L^2(\mathbb{B}^d, \mu_\lambda)$ can be represented as

$$f(z) = \int_{\mathbb{B}^d} K_{\lambda}(z, w) f(w) \, d\mu_{\lambda}(w)$$

where $K_{\lambda}(z, w) = \frac{1}{(1-z \cdot \overline{w})^{\lambda}}$ is called the reproducing kernel for this space.

Consider the formula for the reproducing kernel $K(w, z) = \frac{1}{(1-z\cdot\overline{w})^{\lambda}}$. It is positive definite for all $\lambda > 0$, not only $\lambda > d$. This is an evidence to support that the space $\mathcal{H}L^2(\mathbb{B}^d,\mu_\lambda)$ can be extended to $\lambda > 0$ as "reproducing kernel Hilbert spaces".

According to Theorem 4 in [Chailuek,K and Hall,B], we can define a holomorphic Sobolev space (or Besov space) as follows. Let $n = \left\lfloor \frac{d}{2} \right\rfloor$, for all $\lambda > 0$, define

$$H(\mathbb{B}^d,\lambda) = \{ f \colon \mathbb{B}^d \to \mathbb{C} \mid N^k f \in \mathcal{H}L^2(\mathbb{B}^d,\mu_{\lambda+2n}), \ 0 \le k \le n \}$$

where N denote the number operator

$$N = \sum_{i=1}^{d} z_i \frac{\partial}{\partial z_i}.$$

Then $\langle f,g\rangle_{\lambda} = \langle Af,Bg\rangle_{\mathcal{H}L^2(\mathbb{B}^d,\mu_{\lambda+2n})}$ where

$$A = \left(I + \frac{N}{\lambda + n}\right) \left(I + \frac{N}{\lambda + n + 1}\right) \cdots \left(I + \frac{N}{\lambda + 2n - 1}\right)$$
$$B = \left(I + \frac{N}{\lambda}\right) \left(I + \frac{N}{\lambda + 1}\right) \cdots \left(I + \frac{N}{\lambda + n - 1}\right)$$

defines an inner product on $H(\mathbb{B}^d, \lambda)$ and , with respect to this inner product, $H(\mathbb{B}^d, \lambda)$ is a complete space whose reproducing kernel is also given by $K_{\lambda}(z, w) = \frac{1}{(1-z \cdot \overline{w})^{\lambda}}$. Moreover, $H(\mathbb{B}^d, \lambda)$ is identical to $\mathcal{H}L^2(\mathbb{B}^d, \mu_{\lambda})$ when $\lambda > d$.

By the definition of a generalized Bergman space. In this research, we will show that the duality of a generalized Bergman space can be proved by direct computation and boundedness of coefficients.

Preliminaries

In this chapter, we first collect some basic knowledge and the notations of operators used in this research.

Definition 1. Let X be a vector space over a field \mathbb{F} . A function $\|\cdot\| : X \mapsto [0, \infty)$ is said to be a **norm** on X if

- (i) ||x|| = 0 if and only if x = 0
- (ii) ||cx|| = |c|||x|| for any $x \in X$ and $c \in \mathbb{F}$
- (iii) $||x + y|| \le ||x|| + ||y||$ for any $x, y \in X$.

A vector space equipped with a norm is called a **normed linear space**, or simply a **normed space**. Property (iii) is referred to as the *triangle inequality*.

Definition 2. The metric space (X, d) is said to be **complete** if every Cauchy sequence in X converges (that is has a limit which is an element of X). That is if $d(x_n, x_m) \to 0$ as $m, n \to \infty$ then $\{x_n\}$ must converge also in X.

Definition 3. A **Banach Space** is a normed linear space which is complete in the metric defined by its norm. That is d(x, y) = ||x - y||.

Definition 4. An inner product on a vector space V is a function that associates a complex number $\langle u, v \rangle$ with each pair of vector u and v in V in such a way that the following axioms are satisfied for all vectors u, v and w in V and all scalars k.

- (i) $\langle u, v \rangle = \langle v, u \rangle$
- (ii) $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- (iii) $\langle ku, v \rangle = k \langle u, v \rangle$
- (iv) $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0$ if and only if v = 0.

A vector space equipped with an inner product is called an **inner product space**. So if we define $||v|| = \sqrt{\langle v, v \rangle}$ then $|| \cdot ||$ is a norm on V.

Definition 5. For $1 \ge p < \infty$, the $\mathcal{L}^{\mathcal{P}}(X, \mu)$ -space is the collection of all functions $f: X \to \mathbb{C}$ such that

$$\int_X \|f(z)\|^p d\mu(z) < \infty.$$

We define $L^p(X,\mu)$ to be the space of all equivalence classes of functions in $L^p(X,\mu)$ under the relation fg if and only if f = g almost everywhere with respect to the measure μ

Definition 6. A **Hilbert space** is an inner product space which is complete with respect to the norm given by the inner product.

Theorem 1. (Riesz Representation) If L is a bounded linear functional on a Hilbert space H, then there exists a unique $y \in H$ such that

$$L(x) = \langle x, y \rangle$$
 for each $x \in H$

Moreover ||L|| = ||y||.

Theorem 2. (Hölder inequality) If p > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \left(\sum_{i=1}^{n} |a_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |b_{i}|^{q}\right)^{\frac{1}{q}}$$

Definition 7. Let X be a norm linear space. Denote by X^* the set of all bounded linear functional on X. We call X^* the **dual space** of X

Theorem 3. (Duality of Bergman spaces) A Bergman space can be represented by the dual of another Bergman space by the following theorem. (See Zhu, K Theorem 2.12) For $\alpha, \beta > d$,

$$\mathcal{H}L^2(\mathbb{B}^d,\mu_\alpha)^* = \mathcal{H}L^2(\mathbb{B}^d,\mu_\beta)$$

under the inner product

$$\langle f,g \rangle_{\mathcal{H}L^2(\mathbb{B}^d,\mu_{\gamma})} = \int_{\mathbb{B}^d} f(z)\overline{g(z)} \, d\mu_{\gamma}(z),$$

for $f \in \mathcal{H}L^2(\mathbb{B}^d,\mu_{\alpha}), \ g \in \mathcal{H}L^2(\mathbb{B}^d,\mu_{\beta}) \ and \ \gamma = \frac{\alpha+\beta}{2}.$

Duality of generalized Bergman spaces. It should be noted that a Bergman space $\mathcal{H}L^2(\mathbb{B}^d, \mu_\lambda)$ is a closed subspace of the space $L^2(\mathbb{B}^d, \mu_\lambda)$. However, by its definition, $H(\mathbb{B}^d, \lambda)$ is not defined as a subspace of any L^2 space. Therefore the proof of the duality of Bergman spaces cannot be adopted to $H(\mathbb{B}^d, \lambda)$. However, the duality of generalized Bergman space can be proved by direct computation and boundedness of coefficients.

Main Results

Theorem 4. For $\alpha, \beta > 0$

$$H(\mathbb{B}^d, \alpha)^* = H(\mathbb{B}^d, \beta)$$

under the inner product

$$\langle f,g \rangle_{\gamma} = \int_{\mathbb{B}^d} Af(z) \overline{Bg(z)} \, d\mu_{\gamma+2n}(z),$$

for $f \in H(\mathbb{B}^d, \alpha)$, $g \in H(\mathbb{B}^d, \beta)$ and $\gamma = \frac{\alpha + \beta}{2}$.

Proof. For each $g \in H(\mathbb{B}^d, \beta)$, we define $T_g \colon H(\mathbb{B}^d, \alpha) \to \mathbb{C}$ by

$$T_g(f) = \langle f, g \rangle_{\gamma}.$$

Next, we will prove that $T_g \in H(\mathbb{B}^d, \alpha)^*$. Consider

$$\begin{aligned} |T_g(f)| &= |\langle f,g \rangle_{\gamma}| \\ &= |\langle Af,Bg \rangle_{\mathcal{H}L^2(\mathbb{B}^d,\mu_{\gamma+2n})}| \\ &= c_{\gamma+2n} \left| \int_{\mathbb{B}^d} Af(z)\overline{Bg(z)}(1-|z|^2)^{\gamma+2n} (1-|z|^2)^{-(d+1)} dz \right| \\ &\leq c_{\gamma+2n} \int_{\mathbb{B}^d} (1-|z|^2)^{\frac{\alpha+2n}{2}} |Af(z)|(1-|z|^2)^{\frac{\beta+2n}{2}} \overline{|Bg(z)|} (1-|z|^2)^{-(d+1)} dz. \end{aligned}$$

By Hölder's inequality,

$$\begin{aligned} |T_{g}(f)| &\leq c_{\gamma+2n} \left(\int_{\mathbb{B}^{d}} ((1-|z|^{2})^{\frac{\alpha+2n}{2}} |Af(z)|)^{2} (1-|z|^{2})^{-(d+1)} dz \right)^{\frac{1}{2}} \\ &\quad \cdot \left(\int_{\mathbb{B}^{d}} ((1-|z|^{2})^{\frac{\beta+2n}{2}} \overline{|Bg(z)|})^{2} (1-|z|^{2})^{-(d+1)} dz \right)^{\frac{1}{2}} \\ &= c_{\gamma+2n} \left(\int_{\mathbb{B}^{d}} |Af(z)|^{2} (1-|z|^{2})^{\alpha+2n} (1-|z|^{2})^{-(d+1)} dz \right)^{\frac{1}{2}} \\ &\quad \cdot \left(\int_{\mathbb{B}^{d}} \overline{|Bg(z)|}^{2} (1-|z|^{2})^{\beta+2n} (1-|z|^{2})^{-(d+1)} dz \right)^{\frac{1}{2}} \\ &= c_{\gamma+2n} ||Af(z)||_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} ||Bg(z)||_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\beta+2n})} \\ &= c_{\gamma+2n} \langle Af(z), Af(z) \rangle_{\alpha+2n} \langle Bg(z), Bg(z) \rangle_{\beta+2n}. \end{aligned}$$

By considering the coefficients in the operators A and B, there exist constants $C_A(n,\alpha)$ and $C_B(n,\beta)$ such that $\langle Af(z), Af(z) \rangle_{\alpha+2n} \leq C_A(n,\alpha) \langle f(z), f(z) \rangle_{\alpha+2n}$ and $\langle Bg(z), Bg(z) \rangle_{\beta+2n} \leq C_B(n,\alpha) \langle g(z), g(z) \rangle_{\beta+2n}$.

Therefore, $|T_g(f)| \leq C ||g||_{\beta+2n} ||f||_{\alpha+2n}$ where the constant C is independent of f.

Conversely, let $F \in H(\mathbb{B}^d, \alpha)^*$. By Riesz representation, there exists a function $h \in H(\mathbb{B}^d, \alpha)$ such that $F(f) = \langle f, h \rangle_{\alpha}$ for all $f \in H(\mathbb{B}^d, \alpha)$. To prove $H(\mathbb{B}^d, \alpha)^* = H(\mathbb{B}^d, \beta)$, we need a function $g \in H(\mathbb{B}^d, \beta)$, instead of $h \in H(\mathbb{B}^d, \alpha)$, such that $F(f) = \langle f, g \rangle_{\gamma}$. However, by manipulating the coefficients, we obtain that function g.

Consider, for $f \in H(\mathbb{B}^d, \alpha)$,

$$F(f) = \langle f, h \rangle_{\alpha} = \langle Af, Bh \rangle_{\mathcal{H}L^2(\mathbb{B}^d, \mu_{\alpha+2n})}.$$

Now the operator A and B can be distributed as

$$A = \sum_{k=1}^{n} R_k N^k + I$$
 and $B = \sum_{k=1}^{n} S_k N^k + I$.

Therefore,

$$\begin{split} F(f) &= \langle Af, Bh \rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} \\ &= \left\langle \sum_{k=1}^{n} R_{k} N^{k} f + f, \sum_{k=1}^{n} S_{k} N^{k} h + h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} \\ &= \left\langle \sum_{k=1}^{n} R_{k} N^{k} f, \sum_{k=1}^{n} S_{k} N^{k} h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} + \left\langle f, h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} \\ &+ \left\langle f, \sum_{k=1}^{n} S_{k} N^{k} h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} + \left\langle f, h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\alpha+2n})} \\ &= \left\langle \sum_{k=1}^{n} \mathcal{R}_{k} N^{k} f, \sum_{k=1}^{n} \mathcal{S}_{k} N^{k} M h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\gamma+2n})} + \left\langle f, Mh \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\gamma+2n})} \\ &+ \left\langle f, \sum_{k=1}^{n} \mathcal{R}_{k} N^{k} f + f, \sum_{k=1}^{n} \mathcal{S}_{k} N^{k} M h + Mh \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\gamma+2n})} \\ &= \left\langle \mathcal{A}f, M\mathcal{B}h \right\rangle_{\mathcal{H}L^{2}(\mathbb{B}^{d},\mu_{\gamma+2n})}. \end{split}$$

where M is a positive constant depend on α, γ . Let g = Mh then we also have $g \in H(\mathbb{B}^d, \alpha) \subset H(\mathbb{B}^d, \beta)$ if $\beta > \alpha$. Therefore there exists $g \in H(\mathbb{B}^d, \beta)$ such that $F(f) = \langle \mathcal{A}f, \mathcal{B}g \rangle_{HL^2(\mathbb{B}^d, \mu_{\gamma+2n})} = \langle f, g \rangle_{\gamma}$, for all $f \in H(\mathbb{B}^d, \alpha)$.

The condition $\beta > \alpha$ restricts us to say that this theorem is valid only for $\beta > \alpha > 0$. However for $\alpha > \beta$ from above we get $H(\mathbb{B}^d, \beta)^* \subseteq H(\mathbb{B}^d, \alpha)$ and since H is reflexive Banach spaces therefore $H(\mathbb{B}^d, \alpha)^* \subseteq H(\mathbb{B}^d, \beta)^{**} = H(\mathbb{B}^d, \beta)$ which make the theorem to be valid for all $\alpha, \beta > 0$.

Bibliography

- Chailuek, K and Hall, B.1974. Quantization, Math. USSR Izvestija. Vol.8, No.5.
- Berezin, F. A. 1974. Quantization, Math. USSR Izvestija. Vol.8, No.5, .
- Berezin, F. A. 1976. Quantization in complex symmetric spaces, Math. USSR Izvestija. Vol.9, No.2. 341-379(1976).
- Borthwick, D and Lesniewski, A. 1993. Non-perturbative deformation quantization of Cartan domains, J. Funct. Anal., Vol.113, 153-176.
- Duren, P and Schuster, A. 2004. Bergman spaces, Mathematical surveys and monographs; no.100, American Mathematical Society.
- Englis, M. 1996. Berezin transform and the Laplace-Beltrami operator, St. Petersburg Math. J., Vol.7, No.4, 633-647.
- Folland, G. 1989. Harmonic analysis in phase space, Princeton University Press.
- Hall, B. 2000. Holomorphic methods in analysis and mathematical physics. In, "First Summer School in Analysis and Mathematical Physics", Contemp.

Math. Amer. Math. Soc., Vol.260, 1-59.

- Hedenmalm, H. Korenblum, B and Zhu, K. 2000. *Theory of Bergman spaces*, Springer-Verlag.
- Klimek, S and Lesniewski, A. 1976. Quantum Riemann surfaces I. The unit disc, Commun. Math. Phys, Vol.146, 103-122.
- Unterberger, A and Upmeier, H. 1994. The Berezin transform and invariant differential operators, Commun. Math. Phys, Vol.164, 563-597.

Zhu, K. 2004. Spaces of holomorphic functions in the unit ball, Springer-Verlag.