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ภาวะคู่กนัของปริภูมเิบิร์กแมนนัยทัว่ไป 

 

มาริสา  เส็นเหมาะ1 

 

บทคัดย่อ 

 ปริภูมิเบิร์กแมนคือปริภูมิของฟังกช์นัโฮโลมอร์ฟิกซ่ึงก ำลงัสองสำมำรถหำปริพนัธ์ไดเ้ม่ือ

เทียบกบัเมเชอร์ dv  โดยท่ี 
2
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 จำก [Chailuek,K and Hall,B] ผูเ้ขียนไดศึ้กษำเก่ียวกบัสมบติับำงประกำรของปริภูมิเบิร์กแมนเชิง

นยัทัว่ไปซ่ึงรวมถึงกำรศึกษำภำวะคู่กนัของปริภูมิเบิร์กแมนเชิงนยัทัว่ไป ในกรณีท่ี 2,   ไว้

แลว้   

 ในกำรศึกษำคร้ังน้ี  เรำไดศึ้กษำเพิ่มเติมถึงภำวะคู่กนัของปริภูมิเบิร์กแมนนยัทัว่ไป นัน่คือ

จะแสดงใหเ้ห็นวำ่ปริภูมิเบิร์กแมน ในกรณีท่ี   ,  มีค่ำใดๆแลว้ ก็ยงัคงมีสมบติักำรเป็นภำวะคู่กนั 
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THE DUALITY OF A GENERALIZED BERGMAN SPACE

Marisa Senmoh1

Abstract

A Bergman space HL2(B, dvα) is the space consisting of all holomorphic

functions on the unit ball B which are square- integrable with respect to dvα where

dvα = cα(1 − |z|2)α. The space is non-zero when α > −1. However, these spaces

can be extended to the case −2 < α ≤ −1 by defining a generalized Bergman

space

HL2(B, α) =

{
f ∈ HL2(B, dvα+2) : z

df

dz
∈ HL2(B, dvα+2)

}
which HL2(B, α) = HL2(B, dvα) when α > −1 and HL2(B, α) is non-zero

when −2 < α ≤ −1.By [Chailuek,K and Hall, B], the authers proved some prop-

erties of a generalized Bergman space and including the duality of a generalized

Bergman space for α, β > −2

In this reserch, we are interested in the duality of a generalized Bergman

space for all α, β.

Keyword: Duality

................................................................................................................................

1 Faculty of Liberal Arts Rajamangala University of Technology srivijaya , Muang ,Songkhla.
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CHAPTER 1

Introduction

Let Bd =

z = (z1, z2, . . . zd) ∈ Cd : ‖z‖ = d

√√√√ d∑
i=1

|zi|2 < 1

 be the open unit ball in Cn.

We define the measure

dµλ = cλ(1− |z|2)λ−(d+1) dz

where cλ is the normalization factor defined by cλ =
Γ(λ)

πdΓ(λ− d)
, λ > d. Denote byHL2(Bd, µλ),

the weighted Bergman space consisting of all holomorphic functions on Bd that are square-

integrable with respect to the measure µλ. These spaces are Hilbert spaces.

The condition λ > d is due to the fact that the measure µλ is finite if and only if λ > d.

When the measure is finite, all bounded holomorphic functions are square-integrable and, more

importantly, the constant cλ makes the measure is a probability measure. However, when the

measure is infinite, there are no nonzero holomorphic functions that are square-integrable with

respect to µλ.

For λ > d and by the Riesz representation, any function f ∈ HL2(Bd, µλ) can be represented

as

f(z) =

∫
Bd

Kλ(z, w)f(w) dµλ(w)

where Kλ(z, w) = 1
(1−z·w)λ

is called the reproducing kernel for this space.

Consider the formula for the reproducing kernel K(w, z) = 1
(1−z·w)λ

. It is positive definite

for all λ > 0, not only λ > d. This is an evidence to support that the space HL2(Bd, µλ) can be

extended to λ > 0 as “reproducing kernel Hilbert spaces” .

According to Theorem 4 in [Chailuek,K and Hall,B], we can define a holomorphic Sobolev

space (or Besov space) as follows. Let n =

⌈
d

2

⌉
, for all λ > 0, define

H(Bd, λ) = {f : Bd → C |Nkf ∈ HL2(Bd, µλ+2n), 0 ≤ k ≤ n}

where N denote the number operator

N =

d∑
i=1

zi
∂

∂zi
.

Then 〈f, g〉λ = 〈Af,Bg〉HL2(Bd,µλ+2n) where

A =

(
I +

N

λ+ n

)(
I +

N

λ+ n+ 1

)
· · ·
(
I +

N

λ+ 2n− 1

)
B =

(
I +

N

λ

)(
I +

N

λ+ 1

)
· · ·
(
I +

N

λ+ n− 1

)
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defines an inner product on H(Bd, λ) and , with respect to this inner product, H(Bd, λ) is a

complete space whose reproducing kernel is also given by Kλ(z, w) =
1

(1− z · w)λ
. Moreover,

H(Bd, λ) is identical to HL2(Bd, µλ) when λ > d.

By the definition of a generalized Bergman space. In this research, we will show that the

duality of a generalized Bergman space can be proved by direct computation and boundedness

of coefficients.
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CHAPTER 2

Preliminaries

In this chapter, we first collect some basic knowledge and the notations of operators used

in this research.

Definition 1. Let X be a vector space over a field F. A function ‖ · ‖ : X 7→ [0,∞) is said to be

a norm on X if

(i) ‖x‖ = 0 if and only if x = 0

(ii) ‖cx‖ = |c|‖x‖ for any x ∈ X and c ∈ F

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ X.

A vector space equipped with a norm is called a normed linear space, or simply a normed space.

Property (iii) is referred to as the triangle inequality.

Definition 2. The metric space (X, d) is said to be complete if every Cauchy sequence in X

converges (that is has a limit which is an element of X). That is if d(xn, xm)→ 0 as m,n→∞

then {xn} must converge also in X.

Definition 3. A Banach Space is a normed linear space which is complete in the metric

defined by its norm. That is d(x, y) = ‖x− y‖.

Definition 4. An inner product on a vector space V is a function that associates a complex

number 〈u, v〉 with each pair of vector u and v in V in such a way that the following axioms are

satisfied for all vectors u, v and w in V and all scalars k.

(i) 〈u, v〉 = 〈v, u〉

(ii) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

(iii) 〈ku, v〉 = k〈u, v〉

(iv) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.

A vector space equipped with an inner product is called an inner product space.

So if we define ‖v‖ =
√
〈v, v〉 then ‖ · ‖ is a norm on V .
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Definition 5. For 1 ≥ p < ∞,the LP(X,µ)-space is the collection of all functions f : X → C

such that ∫
X

‖f(z)‖pdµ(z) <∞.

We define Lp(X,µ) to be the space of all equivalence classes of functions in Lp(X,µ) under the

relation fg if and only if f = g almost everywhere with respect to the measure µ

Definition 6. A Hilbert space is an inner product space which is complete with respect to

the norm given by the inner product.

Theorem 1. (Riesz Representation) If L is a bounded linear functional on a Hilbert space

H, then there exists a unique y ∈ H such that

L(x) = 〈x, y〉 for each x ∈ H

Moreover ‖L‖ = ‖y‖.

Theorem 2. (Hölder inequality) If p > 1 and
1

p
+

1

q
= 1, then

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤ (

n∑
i=1

|ai|p)
1
p (

n∑
i=1

|bi|q)
1
q

Definition 7. Let X be a norm linear space. Denote by X∗ the set of all bounded linear

functional on X. We call X∗ the dual space of X

Theorem 3. (Duality of Bergman spaces) A Bergman space can be represented by the dual

of another Bergman space by the following theorem. (See Zhu,K Theorem 2.12) For α, β > d,

HL2(Bd, µα)∗ = HL2(Bd, µβ)

under the inner product

〈f, g〉HL2(Bd,µγ) =

∫
Bd
f(z)g(z) dµγ(z),

for f ∈ HL2(Bd, µα), g ∈ HL2(Bd, µβ) and γ =
α+ β

2
.

Duality of generalized Bergman spaces. It should be noted that a Bergman spaceHL2(Bd, µλ)

is a closed subspace of the space L2(Bd, µλ). However, by its definition, H(Bd, λ) is not defined

as a subspace of any L2 space. Therefore the proof of the duality of Bergman spaces cannot

be adopted to H(Bd, λ). However, the duality of generalized Bergman space can be proved by

direct computation and boundedness of coefficients.
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CHAPTER 3

Main Results

Theorem 4. For α, β > 0

H(Bd, α)∗ = H(Bd, β)

under the inner product

〈f, g〉γ =

∫
Bd
Af(z)Bg(z) dµγ+2n(z),

for f ∈ H(Bd, α), g ∈ H(Bd, β) and γ =
α+ β

2
.

Proof. For each g ∈ H(Bd, β), we define Tg : H(Bd, α)→ C by

Tg(f) = 〈f, g〉γ .

Next, we will prove that Tg ∈ H(Bd, α)∗. Consider

|Tg(f)| = |〈f, g〉γ |

= |〈Af,Bg〉HL2(Bd,µγ+2n)|

= cγ+2n

∣∣∣∣∫
Bd
Af(z)Bg(z)(1− |z|2)γ+2n (1− |z|2)−(d+1)dz

∣∣∣∣
≤ cγ+2n

∫
Bd

(1− |z|2)
α+2n

2 |Af(z)|(1− |z|2)
β+2n

2 |Bg(z)| (1− |z|2)−(d+1)dz.

By Hölder’s inequality,

|Tg(f)| ≤ cγ+2n

(∫
Bd

((1− |z|2)
α+2n

2 |Af(z)|)2 (1− |z|2)−(d+1)dz

) 1
2

·
(∫

Bd
((1− |z|2)

β+2n
2 |Bg(z)|)2 (1− |z|2)−(d+1)dz

) 1
2

= cγ+2n

(∫
Bd
|Af(z)|2(1− |z|2)α+2n(1− |z|2)−(d+1)dz

) 1
2

·
(∫

Bd
|Bg(z)|

2
(1− |z|2)β+2n(1− |z|2)−(d+1)dz

) 1
2

= cγ+2n‖Af(z)‖HL2(Bd,µα+2n)‖Bg(z)‖HL2(Bd,µβ+2n)

= cγ+2n〈Af(z), Af(z)〉α+2n〈Bg(z), Bg(z)〉β+2n.
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By considering the coefficients in the operators A and B, there exist constants CA(n, α) and

CB(n, β) such that 〈Af(z), Af(z)〉α+2n ≤ CA(n, α)〈f(z), f(z)〉α+2n and 〈Bg(z), Bg(z)〉β+2n ≤

CB(n, α)〈g(z), g(z)〉β+2n.

Therefore, |Tg(f)| ≤ C‖g‖β+2n‖f‖α+2n where the constant C is independent of f .

Conversely, let F ∈ H(Bd, α)∗. By Riesz representation, there exists a function h ∈ H(Bd, α)

such that F (f) = 〈f, h〉α for all f ∈ H(Bd, α). To prove H(Bd, α)∗ = H(Bd, β), we need

a function g ∈ H(Bd, β), instead of h ∈ H(Bd, α), such that F (f) = 〈f, g〉γ . However, by

manipulating the coefficients, we obtain that function g.

Consider, for f ∈ H(Bd, α),

F (f) = 〈f, h〉α = 〈Af,Bh〉HL2(Bd,µα+2n).

Now the operator A and B can be distributed as

A =

n∑
k=1

RkN
k + I and B =

n∑
k=1

SkN
k + I.

Therefore,

F (f) = 〈Af,Bh〉HL2(Bd,µα+2n)

=

〈
n∑
k=1

RkN
kf + f,

n∑
k=1

SkN
kh+ h

〉
HL2(Bd,µα+2n)

=

〈
n∑
k=1

RkN
kf,

n∑
k=1

SkN
kh

〉
HL2(Bd,µα+2n)

+

〈
n∑
k=1

RkN
kf, h

〉
HL2(Bd,µα+2n)

+

〈
f,

n∑
k=1

SkN
kh

〉
HL2(Bd,µα+2n)

+ 〈f, h〉HL2(Bd,µα+2n)

=

〈
n∑
k=1

RkNkf,

n∑
k=1

SkNkMh

〉
HL2(Bd,µγ+2n)

+

〈
n∑
k=1

RkNkf,Mh

〉
HL2(Bd,µγ+2n)

+

〈
f,

n∑
k=1

SkNkMh

〉
HL2(Bd,µγ+2n)

+ 〈f,Mh〉HL2(Bd,µγ+2n)

=

〈
n∑
k=1

RkNkf + f,

n∑
k=1

SkNkMh+Mh

〉
HL2(Bd,µγ+2n)

= 〈Af,MBh〉HL2(Bd,µγ+2n)
.

where M is a positive constant depend on α, γ. Let g = Mh then we also have g ∈ H(Bd, α) ⊂

H(Bd, β) if β > α. Therefore there exists g ∈ H(Bd, β) such that F (f) = 〈Af,Bg〉HL2(Bd,µγ+2n) =

〈f, g〉γ , for all f ∈ H(Bd, α).
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The condition β > α restricts us to say that this theorem is valid only for β > α > 0. However for

α > β from above we get H(Bd, β)∗ ⊆ H(Bd, α) and since H is reflexive Banach spaces therefore

H(Bd, α)∗ ⊆ H(Bd, β)∗∗ = H(Bd, β) which make the theorem to be valid for all α, β > 0.
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CHAPTER 1

Introduction

Let Bd =

z = (z1, z2, . . . zd) ∈ Cd : ‖z‖ = d

√√√√ d∑
i=1

|zi|2 < 1

 be the open unit

ball in Cn. We define the measure

dµλ = cλ(1− |z|2)λ−(d+1) dz

where cλ is the normalization factor defined by cλ =
Γ(λ)

πdΓ(λ− d)
, λ > d. Denote by

HL2(Bd, µλ), the weighted Bergman space consisting of all holomorphic functions

on Bd that are square-integrable with respect to the measure µλ. These spaces are

Hilbert spaces.

The condition λ > d is due to the fact that the measure µλ is finite if and

only if λ > d. When the measure is finite, all bounded holomorphic functions are

square-integrable and, more importantly, the constant cλ makes the measure is a

probability measure. However, when the measure is infinite, there are no nonzero

holomorphic functions that are square-integrable with respect to µλ.

For λ > d and by the Riesz representation, any function f ∈ HL2(Bd, µλ) can

be represented as

f(z) =

∫
Bd

Kλ(z, w)f(w) dµλ(w)

where Kλ(z, w) = 1
(1−z·w)λ is called the reproducing kernel for this space.

Consider the formula for the reproducing kernel K(w, z) = 1
(1−z·w)λ . It is pos-

itive definite for all λ > 0, not only λ > d. This is an evidence to support that

the space HL2(Bd, µλ) can be extended to λ > 0 as “reproducing kernel Hilbert

spaces” .

According to Theorem 4 in [Chailuek,K and Hall,B], we can define a holomor-

phic Sobolev space (or Besov space) as follows. Let n =

⌈
d

2

⌉
, for all λ > 0,



2

define

H(Bd, λ) = {f : Bd → C |Nkf ∈ HL2(Bd, µλ+2n), 0 ≤ k ≤ n}

where N denote the number operator

N =
d∑
i=1

zi
∂

∂zi
.

Then 〈f, g〉λ = 〈Af,Bg〉HL2(Bd,µλ+2n) where

A =

(
I +

N

λ+ n

)(
I +

N

λ+ n+ 1

)
· · ·
(
I +

N

λ+ 2n− 1

)
B =

(
I +

N

λ

)(
I +

N

λ+ 1

)
· · ·
(
I +

N

λ+ n− 1

)
defines an inner product on H(Bd, λ) and , with respect to this inner product,

H(Bd, λ) is a complete space whose reproducing kernel is also given by Kλ(z, w) =

1

(1− z · w)λ
. Moreover, H(Bd, λ) is identical to HL2(Bd, µλ) when λ > d.

By the definition of a generalized Bergman space. In this research, we will

show that the duality of a generalized Bergman space can be proved by direct

computation and boundedness of coefficients.



3

CHAPTER 2

Preliminaries

In this chapter, we first collect some basic knowledge and the notations of

operators used in this research.

Definition 1. Let X be a vector space over a field F. A function ‖·‖ : X 7→ [0,∞)

is said to be a norm on X if

(i) ‖x‖ = 0 if and only if x = 0

(ii) ‖cx‖ = |c|‖x‖ for any x ∈ X and c ∈ F

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ X.

A vector space equipped with a norm is called a normed linear space, or

simply a normed space. Property (iii) is referred to as the triangle inequality.

Definition 2. The metric space (X, d) is said to be complete if every Cauchy

sequence in X converges (that is has a limit which is an element of X). That is if

d(xn, xm)→ 0 as m,n→∞ then {xn} must converge also in X.

Definition 3. A Banach Space is a normed linear space which is complete in

the metric defined by its norm. That is d(x, y) = ‖x− y‖.

Definition 4. An inner product on a vector space V is a function that associates

a complex number 〈u, v〉 with each pair of vector u and v in V in such a way that

the following axioms are satisfied for all vectors u, v and w in V and all scalars k.

(i) 〈u, v〉 = 〈v, u〉

(ii) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

(iii) 〈ku, v〉 = k〈u, v〉

(iv) 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = 0.
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A vector space equipped with an inner product is called an inner product space.

So if we define ‖v‖ =
√
〈v, v〉 then ‖ · ‖ is a norm on V .

Definition 5. For 1 ≥ p <∞,the LP(X,µ)-space is the collection of all functions

f : X → C such that ∫
X

‖f(z)‖pdµ(z) <∞.

We define Lp(X,µ) to be the space of all equivalence classes of functions in

Lp(X,µ) under the relation fg if and only if f = g almost everywhere with respect

to the measure µ

Definition 6. A Hilbert space is an inner product space which is complete with

respect to the norm given by the inner product.

Theorem 1. (Riesz Representation) If L is a bounded linear functional on a

Hilbert space H, then there exists a unique y ∈ H such that

L(x) = 〈x, y〉 for each x ∈ H

Moreover ‖L‖ = ‖y‖.

Theorem 2. (Hölder inequality) If p > 1 and
1

p
+

1

q
= 1, then

∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤ (
n∑
i=1

|ai|p)
1
p (

n∑
i=1

|bi|q)
1
q

Definition 7. Let X be a norm linear space. Denote by X∗ the set of all bounded

linear functional on X. We call X∗ the dual space of X

Theorem 3. (Duality of Bergman spaces) A Bergman space can be repre-

sented by the dual of another Bergman space by the following theorem. (See Zhu,K

Theorem 2.12) For α, β > d,

HL2(Bd, µα)∗ = HL2(Bd, µβ)
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under the inner product

〈f, g〉HL2(Bd,µγ) =

∫
Bd
f(z)g(z) dµγ(z),

for f ∈ HL2(Bd, µα), g ∈ HL2(Bd, µβ) and γ =
α + β

2
.

Duality of generalized Bergman spaces. It should be noted that a Bergman

space HL2(Bd, µλ) is a closed subspace of the space L2(Bd, µλ). However, by its

definition, H(Bd, λ) is not defined as a subspace of any L2 space. Therefore the

proof of the duality of Bergman spaces cannot be adopted to H(Bd, λ). However,

the duality of generalized Bergman space can be proved by direct computation

and boundedness of coefficients.
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CHAPTER 3

Main Results

Theorem 4. For α, β > 0

H(Bd, α)∗ = H(Bd, β)

under the inner product

〈f, g〉γ =

∫
Bd
Af(z)Bg(z) dµγ+2n(z),

for f ∈ H(Bd, α), g ∈ H(Bd, β) and γ =
α + β

2
.

Proof. For each g ∈ H(Bd, β), we define Tg : H(Bd, α)→ C by

Tg(f) = 〈f, g〉γ.

Next, we will prove that Tg ∈ H(Bd, α)∗. Consider

|Tg(f)| = |〈f, g〉γ|

= |〈Af,Bg〉HL2(Bd,µγ+2n)|

= cγ+2n

∣∣∣∣∫
Bd
Af(z)Bg(z)(1− |z|2)γ+2n (1− |z|2)−(d+1)dz

∣∣∣∣
≤ cγ+2n

∫
Bd

(1− |z|2)
α+2n

2 |Af(z)|(1− |z|2)
β+2n

2 |Bg(z)| (1− |z|2)−(d+1)dz.
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By Hölder’s inequality,

|Tg(f)| ≤ cγ+2n

(∫
Bd

((1− |z|2)
α+2n

2 |Af(z)|)2 (1− |z|2)−(d+1)dz

) 1
2

·
(∫

Bd
((1− |z|2)

β+2n
2 |Bg(z)|)2 (1− |z|2)−(d+1)dz

) 1
2

= cγ+2n

(∫
Bd
|Af(z)|2(1− |z|2)α+2n(1− |z|2)−(d+1)dz

) 1
2

·
(∫

Bd
|Bg(z)|

2
(1− |z|2)β+2n(1− |z|2)−(d+1)dz

) 1
2

= cγ+2n‖Af(z)‖HL2(Bd,µα+2n)‖Bg(z)‖HL2(Bd,µβ+2n)

= cγ+2n〈Af(z), Af(z)〉α+2n〈Bg(z), Bg(z)〉β+2n.

By considering the coefficients in the operators A and B, there exist constants

CA(n, α) and CB(n, β) such that 〈Af(z), Af(z)〉α+2n ≤ CA(n, α)〈f(z), f(z)〉α+2n

and 〈Bg(z), Bg(z)〉β+2n ≤ CB(n, α)〈g(z), g(z)〉β+2n.

Therefore, |Tg(f)| ≤ C‖g‖β+2n‖f‖α+2n where the constant C is independent of f .

Conversely, let F ∈ H(Bd, α)∗. By Riesz representation, there exists a function

h ∈ H(Bd, α) such that F (f) = 〈f, h〉α for all f ∈ H(Bd, α). To prove H(Bd, α)∗ =

H(Bd, β), we need a function g ∈ H(Bd, β), instead of h ∈ H(Bd, α), such that

F (f) = 〈f, g〉γ. However, by manipulating the coefficients, we obtain that function

g.

Consider, for f ∈ H(Bd, α),

F (f) = 〈f, h〉α = 〈Af,Bh〉HL2(Bd,µα+2n).

Now the operator A and B can be distributed as

A =
n∑
k=1

RkN
k + I and B =

n∑
k=1

SkN
k + I.
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Therefore,

F (f) = 〈Af,Bh〉HL2(Bd,µα+2n)

=

〈
n∑
k=1

RkN
kf + f,

n∑
k=1

SkN
kh+ h

〉
HL2(Bd,µα+2n)

=

〈
n∑
k=1

RkN
kf,

n∑
k=1

SkN
kh

〉
HL2(Bd,µα+2n)

+

〈
n∑
k=1

RkN
kf, h

〉
HL2(Bd,µα+2n)

+

〈
f,

n∑
k=1

SkN
kh

〉
HL2(Bd,µα+2n)

+ 〈f, h〉HL2(Bd,µα+2n)

=

〈
n∑
k=1

RkN
kf,

n∑
k=1

SkNkMh

〉
HL2(Bd,µγ+2n)

+

〈
n∑
k=1

RkN
kf,Mh

〉
HL2(Bd,µγ+2n)

+

〈
f,

n∑
k=1

SkNkMh

〉
HL2(Bd,µγ+2n)

+ 〈f,Mh〉HL2(Bd,µγ+2n)

=

〈
n∑
k=1

RkN
kf + f,

n∑
k=1

SkNkMh+Mh

〉
HL2(Bd,µγ+2n)

= 〈Af,MBh〉HL2(Bd,µγ+2n)
.

where M is a positive constant depend on α, γ. Let g = Mh then we also have

g ∈ H(Bd, α) ⊂ H(Bd, β) if β > α. Therefore there exists g ∈ H(Bd, β) such that

F (f) = 〈Af,Bg〉HL2(Bd,µγ+2n) = 〈f, g〉γ, for all f ∈ H(Bd, α).

The condition β > α restricts us to say that this theorem is valid only for β >

α > 0. However for α > β from above we get H(Bd, β)∗ ⊆ H(Bd, α) and since

H is reflexive Banach spaces therefore H(Bd, α)∗ ⊆ H(Bd, β)∗∗ = H(Bd, β) which

make the theorem to be valid for all α, β > 0.
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